Probabilités - Chapitre 18

Variables aléatoires à densité

I - Variables aléatoires à densité

I.1 - Rappels sur les fonctions de répartition

Définition 1 : Fonction de répartition d'une variable aléatoire

Si X est une variable aléatoire, la fonction de répartition de X est la fonction F_X définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \quad F_X(x) = P([X \leq x]).$$

Proposition 1: Caractérisation d'un fonction de répartition

Une fonction $F: \mathbb{R} \to \mathbb{R}$ est la fonction de répartition d'une variable aléatoire X si et seulement si :

- 1. F est croissante sur \mathbb{R} :
- 2. *F* est continue à droite en tout point;
- 3. F admet des limites en $-\infty$ et $+\infty$ et vérifie $\lim_{x \to -\infty} F_X(x) = 0$ et $\lim_{x \to +\infty} F_X(x) = 1$.

I.2 - Densité de probabilité

Définition 2

Soit X une variable aléatoire et F_X sa fonction de répartition.

On dit que X est une variable aléatoire à densité s'il existe une fonction $f_X : \mathbb{R} \to \mathbb{R}$ vérifiant :

- 1. f_X est positive sur \mathbb{R} ;
- 2. f_X est continue sur \mathbb{R} , sauf éventuellement en un nombre fini de points;

3.
$$\int_{-\infty}^{+\infty} f_X(t) dt \text{ est convergente et } \int_{-\infty}^{+\infty} f_X(t) dt = 1;$$

4.
$$\forall x \in \mathbb{R}, \ F_X(x) = \int_{-x}^{x} f_X(t) \ dt$$
.

On dit alors que la fonction f_X est **une densité** de la variable aléatoire X.

Remarque 1

- La fonction f_X n'est pas unique c'est pourquoi on dit que c'est **une** densité de X. En effet si g est une fonction égale à f_X sauf en un nombre fini de points alors g est aussi une densité de X.
- La fonction de répartition est une primitive de la densité.

Le théorème suivant permet de déterminer si une fonction f donnée est une densité de probabilité d'une variable à densité X.

Théorème 1

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction vérifiant :

- 1. f est positive sur \mathbb{R} ;
- 2. f est continue sur \mathbb{R} , sauf éventuellement en un nombre fini de points;

3.
$$\int_{-\infty}^{+\infty} f(t) dt$$
 est convergente et $\int_{-\infty}^{+\infty} f(t) dt = 1$.

Alors il existe une variable aléatoire X telle que f soit une densité de la variable X. On dit alors que f est une **densité de probabilité**.

Méthode 1 : *Obtenir la fonction de répartition à partir d'une densité*

Soit *f* une fonction réelle.

- On peut vérifier que f est une densité d'une variable aléatoire X en utilisant le théorème 1. On la notera alors f_X .
- Dans ce cas, la fonction de répartition de X est alors donnée par :

$$\forall x \in \mathbb{R}, \quad F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t.$$

Exercice 1

Montrer que la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} 0 & \text{si } x < 1 \\ \frac{1}{x^2} & \text{si } x \geqslant 1 \end{cases}$ est une densité de probabilité

Exercice 2

Soit $\lambda \in \mathbb{R}_{=}^{*}$. Montrer que la fonction f définie sur \mathbb{R} par : $f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \geq 0 \\ 0 & \text{si } x < 0 \end{cases}$ est une densité de probabilité d'une variable X. Donner la fonction de répartition de X.

Exercice 3

Soit f la fonction définie par :

Probabilités: Chapitre 18

$$f(x) = \begin{cases} xe^{-\frac{x^2}{2}} & \text{si } x \geqslant 0\\ 0 & \text{si } x < 0 \end{cases}$$

- 1. Montrer que *f* est une densité de probabilité.
- 2. La durée de vie d'un certain composant électronique est une variable aléatoire *X* dont une densité est *f* (on dit que *X* suit la *loi de Rayleigh*)
 - (a) Déterminer la fonction de répartition de *X*, notée *F*.
 - (b) Déterminer le réel μ , appelé *médiane* de X, tel que $F(\mu) = \frac{1}{2}$.
- 3. On appelle mode de X tout réel x en lequel f atteint son maximum. Montrer que X a un seul mode M_0 et le déterminer.

I.3 - Caractérisation par la fonction de répartition

Théorème 2

Si F est la fonction de répartition d'une variable à densité X et si f est une densité de X alors :

- F est continue sur \mathbb{R} .
- F est de classe \mathcal{C}^1 sauf éventuellement en un nombre fini de points et lorsque F est dérivable en x, F'(x) = f(x).

Le théorème suivant permet de déterminer si une fonction F donnée est la fonction de répartition d'une variable à densité X.

Théorème 3

Soit F une fonction de \mathbb{R} dans \mathbb{R} vérifiant :

- 1. F est une fonction continue sur \mathbb{R} ;
- 2. F est \mathcal{C}^1 sur \mathbb{R} sauf en un nombre fini de points;
- 3. F est croissante sur \mathbb{R} ;
- 4. $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$.

Alors il existe une variable aléatoire à densité X telle que F soit la fonction de répartition de X. De plus, si f est une fonction positive telle que F'(x) = f(x) en tout point x où F est dérivable, alors f est une densité de X.

Méthode 2: Obtenir une densité à partir de la fonction de répartition

Soit *F* une fonction réelle.

- On peut vérifier que *F* la fonction de répartition d'une variable aléatoire à densité *X* en utilisant le théorème 3.
- Dans ce cas, on obtient une densité de *X* en dérivant la fonction *F* (quand c'est possible) :

$$f_X(x) = F'(x).$$

Exercice 4

Soit *F* la fonction définie sur \mathbb{R} par : $F(x) = \begin{cases} 0 & \text{si } x < 2 \\ 1 - \frac{8}{x^3} & \text{si } x \ge 2 \end{cases}$

- 1. Montrer que *F* est la fonction de répartition d'une variable à densité *Z*.
- 2. Déterminer une densité de Z.

I.4 - Quelques propriétés

Proposition 2

Soit X une variable aléatoire admettant une densité f_X . On note F_X sa fonction de répartition.

1. Pour tout réel x, on a :

$$P(X \leqslant x) = \int_{-\infty}^{x} f_X(t) \, dt = F_X(x) \qquad \text{et} \qquad P(X \geqslant x) = \int_{x}^{+\infty} f_X(t) \, dt = 1 - F_X(x)$$

2. Pour tout réels a et b tels que $a \le b$, on a :

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} f_X(t) dt = F_X(b) - F_X(a)$$

3. Pour tout réel a, on a :

$$P(X = a) = 0$$

Remarque 2

- Les probabilités $P(X \le x)$, $P(X \ge x)$ et $P(a \le X \le b)$ s'interprètent comme des aires sous la courbe représentative de la densité f.
- On a: $P(X < x) = P(X \le x)$ et $P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b)$.
- Contrairement aux variables discrètes, on a pour tout $x \in \mathbb{R}$, P(X = x) = 0. Ainsi la loi de X n'est pas donnée par les probabilités P(X = x) mais plutôt par la fonction de répartition ou de la densité.

Exercice 5

Soient *X* et *Z* les variables aléatoires définies dans les exercices 2 et 4. Calculer :

• $P(X \leq 2)$

• $P(2 < X \le 3)$

• $P(X \geqslant 1)$

- $\bullet P(Z < 4)$
 - 4) $P(Z \geqslant 0)$

• $P(Z \in [-1, 3])$

II - Moments d'une variable aléatoire à densité

II.1 - Espérance

Définition 3

Soit X une variable aléatoire de densité f.

Si l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ est **absolument convergente**, on dit que X admet une espérance, notée E(X) et on a :

$$E(X) = \int_{-\infty}^{+\infty} t f(t) \, dt$$

Exercice 6

- La variable aléatoire *X* définie dans l'exercice 2 admet-elle une espérance ? Si oui, la calculer.
- Montrer que la fonction g définie sur \mathbb{R} par : $g(x) = \begin{cases} 0 & \text{si } x < 1 \\ 1/x^2 & \text{si } x \geqslant 1 \end{cases}$ est une densité d'une variable aléatoire X. X admet-elle une espérance? Si oui, la calculer.

Théorème 4: Linéarité de l'espérance

Soient X et Y deux variable aléatoire à densité admettant une espérance. Soient a et b deux réels.

- Pour tous réels a et b, on a : E(aX + b) = aE(X) + b.
- Si X+Y est une variable à densité alors elle admet une espérance et on a : E(X+Y)=E(X)+E(Y).

II.2 - Théorème de transfert et moment d'ordre r

Théorème 5: Théorème de transfert

Soient X est une variable aléatoire de densité f et φ une fonction continue sur $\mathbb R$ sauf éventuellement en un nombre fini de points.

Si l'intégrale $\int_{-\infty}^{+\infty} \varphi(t) f_X(t) \, dt$ est **absolument convergente**, alors la variable aléatoire $\varphi(X)$ admet une espérance et on a :

$$E(\varphi(X)) = \int_{-\infty}^{+\infty} \varphi(t) f_X(t) dt.$$

Exercice 7

Probabilités: Chapitre 18

Soit X la variable aléatoire définie dans l'exercice 2. La variable e^X admet-elle une d'espérance ?

Définition 4

Soit $r \in \mathbb{N}^*$. Si l'intégrale $\int_{-\infty}^{+\infty} t^r f(t) \, \mathrm{d}t$ est absolument convergente alors on dit que X admet un moment d'ordre r, notée $m_r(X)$ et on a : $m_r(X) = E(X^r) = \int_{-\infty}^{+\infty} t^r f(t) \, \mathrm{d}t$.

II.3 - Variance et écart-type

Définition 5

Si la variable aléatoire X admet une espérance et si la variable $(X-E(X))^2$ admet une espérance, on appelle **variance de** X le réel

$$V(X) = E((X - E(X))^2)$$

Théorème 6

Une variable à densité X admet une variance ssi X admet un moment d'ordre 2 et dans ce cas, on a :

$$V(X) = E(X^{2}) - [E(X)]^{2}$$

Exercice 8

- La variable aléatoire *X* définie dans l'exercice 2 admet-elle une variance ? Si oui, la calculer.
- Soit *X* une variable aléatoire de densité *f* définie sur \mathbb{R} par : $f(x) = \begin{cases} 0 & \text{si } x < 1 \\ 2/x^3 & \text{si } x \ge 1 \end{cases}$. *X* admet-elle une variance? Si oui, la calculer.

Définition 6

Si X admet une variance alors $V(X) \geqslant 0$. On appelle alors **écart-type** le réel $\sigma(X) = \sqrt{V(X)}$

Proposition 3

Soit *X* une variable à densité admettant une variance. Alors pour tout réels a et b, aX + b admet une variance et on a : $V(aX + b) = a^2V(X)$.

Définition 7

- Si X est une variable à densité telle que E(X)=0 on dit que X est une variable centrée.
- Si X est une variable à densité telle que $\sigma(X)=1$, on dit que X est une variable réduite.
- Si X admet une espérance et un écart-type non nul, la variable $X^* = \frac{X E(X)}{\sigma(X)}$ est appelée **la variable centrée réduite associée à** X.