ECE1 Année 2018-2019

TD - Lancers d'une pièce. Variables aléatoires finies.

On désigne par n un entier naturel supérieur ou égal à 2. On note p un réel de]0;1[et on pose q=1-p.

On dispose d'une pièce donnant Pile avec la probabilité p et Face avec la probabilité q.

On lance cette pièce et on arrête les lancers dans l'une des deux situations suivantes :

- Soit si l'on a obtenu Pile .
- \bullet Soit si l'on a obtenu n fois Face.

Pour tout entier naturel k non nul, on note P_k (respectivement F_k l'événement « on obtient Pile (respectivement Face) au k^e lancer ».

On note T_n le nombre de lancers effectués, X_n le nombre de Pile obtenus et enfin Y_n le nombre de Face obtenus.

- 1. Loi de T_n .
 - (a) Pour tout k de [1; n-1], déterminer, en distinguant le cas k=1, la probabilité $P(T_n=k)$
 - (b) Déterminer $P(T_n = n)$.
 - (c) Vérifier que $\sum_{k=1}^{n} P(T_n = k) = 1$.
 - (d) Vérifier que $E(T_n) = \frac{1-q^n}{1-q}$.
- 2. Loi de X_n .
 - (a) Donner la loi de X_n .
 - (b) Vérifier que $E(X_n) = 1 q^n$.
- 3. Loi de Y_n .
 - (a) Déterminer, pour tout k de [0; n-1], la probabilité $P(Y_n = k)$.
 - (b) Déterminer $P(Y_n = n)$.
 - (c) Écrire une égalité liant les variables aléatoires T_n , X_n et Y_n , puis en déduire $E(Y_n)$.
- 4. Simulation informatique.

Compléter les trois instructions manquantes pour que le programme suivant simule l'expérience aléatoire décrite ci-dessus et pour qu'il affiche, dans cet ordre, les valeurs prises par les variables aléatoires T_n , X_n et Y_n .